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Abstract. Magnetisation measurements of three synthetic single-crystals AzSiOj of the 
olivine family are presented (A = Mn, Fe and CO). All three compounds order anti- 
ferromagnetically in the range 45-65 K. For A = Mn, weak ferromagnetism is present. For 
A = Fe and CO, the magnetisation is strongly anisotropic. A model is proposed, which 
extends existing published explanations of the magnetic structures. The magnetic cations 
are represented by spin Hamiltonians, and their interactions by mean fields. Analytical 
relationships are derived between Curie temperatures. Curie constants and NCel tem- 
peratures on the one hand, and spin Hamiltonian parameters on the other. From the latter 
parameters the maximum possible information on  orbital levels is derived. This is enough 
tocalculate magneticentropiesin goodagreement withpublisheddata, together withspecific 
heat measurements. and to point out the limits of validity of the linearisation processes 
that are necessary to obtain usable analytical relations between experimental and atomic 
parameters. Below T,, the susceptibilities are analysed using the conclusions of previous 
magnetic structure studies, especially those concerning the role of competing exchanges, 
single-ion anisotropies, and symmetry requirements. 

1. Introduction 

The magnetic susceptibility of a powder of Co2Si04 has been measured as a function of 
temperature by Nomura et a1 (1964), and that of powders of Mn2Si04 and Fe2Si04 by 
Santoro et a1 (1966). In all three olivines a critical temperature was found above which 
the susceptibility is paramagnetic. These authors also observed the powder neutron 
diffraction pattern at 4.2 K and 300 K in all three samples, and in addition at 58 K and 
77 K in Fe2Si04. The magnetic structure at 4.2 K was found to be antiferromagnetic in 
all cases, with the magnetic cell equal to the crystallographic cell. The decrease in the 
susceptibility of Co2Si04 below the transition temperature was not surprising in view of 
the antiferromagnetism of the silicate. As for the other two powders, the evolution of 
their reciprocal susceptibilities with decreasing temperature was considered as ‘almost 
identical’. 
$ Deceased. 
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Although the curves show many features, a maximum seen well below the ordering 
transition was interpreted as being due to a second transition. This was related to the 
canting of the magnetic moments of the 4a sites observed at 4.2 K in these two silicates 
but not in Co,SiO,. Since for Fe2Si04 the pattern at 58 K seemed to show no canting, a 
magnetic transition between a collinear structure and a canted structure was naturally 
put forward. 

Takei and Hosoya (1982) succeeded in growing pure single crystals of these com- 
pounds. Lottermoseretal(l986) and Lottermoser and Fuess (1988) followed the neutron 
reflections of these crystals over a range of temperatures below the Nee1 temperature 
( TN), and found that canting exists in all three silicates. However, the thermal behaviour 
of the canting is very different for the three crystals. In Mn2Si04, the canting is very 
weak down to a temperature where it increases rapidly with decreasing temperature. In 
contrast, at decreasing temperature the canting increases monotonically in Fe2Si04 and 
remains constant in Co2Si04. Ballet and Fuess (1989) interpreted the magnetic structures 
and their thermal evolutions by considering both exchange interactions and single-ion 
anisotropies, and in making full use of the symmetry relationships between the magnetic 
sites. 

The present paper reports a magnetometer study of these crystals. The susceptibility 
is clearly anisotropic for Fe2Si04 and Co2Si04. As a function of temperature, the 
susceptibility curves contrast considerably with one another on one hand, and from the 
powder susceptibility on the other. We propose explanations for the main features of 
these curves by extending the interpretation by Ballet and Fuess (1989) of the underlying 
magnetic structures to the effect on them of an applied magnetic field. Analytical 
relations are established between the paramagnetic Curie temperatures (6,) and Curie 
constants (C,) along the three axes, as well as the ordering temperature (TN) and the 
exchange and anisotropy parameters. This analytical discussion relies on the assumption 
that the magnetic cations can be described by spin Hamiltonians, and their interactions 
by the mean-field scheme. 

2. Materials and experiment 

2.1. Crystalgrowth 

Olivine minerals (A2Si04) occur in nature only in the form of solid solutions. Synthetic 
end-member olivines can be grown in the laboratory. Takei and Hosoya (1982) pointed 
out that the choice of the growth method plays a decisive role in the quality of the 
crystals. Large, high-quality olivine single crystals of Mn2Si04 (tephroite) have been 
grown by the Czochralski method, and Fe2Si04 (fayalite) and Co2Si04 by the floating- 
zone method in a controlled atmosphere using focused radiation heating (Takei et a1 
1984). The typical crystal size was 7 mm in diameter and 70 mm in length. The growth 
directionsof the crystals on which we performed our experiments were [ O O l ]  for tephroite 
and fayalite and [ 1001 for CO olivine. Crystallographically oriented rectangular samples 
were cut out of the middle of these crystals. Quality and orientation were checked by x- 
ray and neutron diffraction. 

2.2. Experiment 

The magnetic measurements were carried out with a vibrating-sample magnetometer 
(VSM model: PAR 159) (Foner 1959). The cryogenic system (Dewar assembly: model 
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Figure 1. Magnetisation against applied field at 
T = 4.2 K for (a )  Mn,SiO,; ( b )  Fe,SiO,; (c) 
Co2Si0,. 

Figure 2. Magnetisation against temperature in a 
field of 10 kOe for ( a )  Mn,SiO,; ( b )  Fe2Si0,; (c) 
Co,SiO,. Inset, magnetisation against tempera- 
ture along the c axis in Mn,SiO, in zero field. 

159, Janis Research Company) performs two functions: it cools the superconducting 
magnet (split coil), and cools the sample to the required temperature, which is regulated 
by a cryogenic temperature controller (PAR 152). For monitoring the sample tempera- 
ture, a calibrated carbon glass resistor (CGR 1-1000, Lake Shore Cryotronics Inc.) is 
located in the rod itself immediately adjacent to the sample. The influence of strong 
magnetic fields on the nominal temperature is very small (0.1 K under 50 kOe). 

The magnetometer itself was calibrated by using a cylindrical sample of high-purity 
nickel supplied by PAR. The magnetometer was fully monitored, and the data processed 
by home-made computer programs. A goniometer allowed the crystal to rotate around 
the vibrating axis in the applied magnetic field. The magnetisation was measured for our 
three crystals along each of the three crystallographic axes a, b and c .  The alignment was 
obtained within 2" by looking for the extremum effect. 

2.3. Results 

Magnetisation curves M ( H )  were obtained for fields up to 50 kOe at various tem- 
peratures (figure 1); they are linear. Some measurements had been made previously by 
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Figure 3. Inverse magnetisation against temperature in a field of 10 kOe for ( a )  Mn2Si04;  
( b )  FezSiO,; (c) Co,SiO,. Above TN. the curves are fairly well fitted by straight lines, parts 
of which are shown above 260 K and below 5 K. 

Muller et a1 (1982) on Fe2Si04 crystals up to 150 kOe. No departure from linearity could 
be seen in this range at 35 K,  whereas at 4.2 K an upward curvature appeared above 
50 kOe. The magnetisation M ( T )  at 10 kOe was followed between 4.2 K and 250 K 
(figure 2). Because of the linearity of M ( H )  they also represent the initial susceptibility 
curves x ( T ) ,  except for Mn2Si04 where a remnant magnetisation is observed along the 
c-axis. All three crystals show a critical temperature T,  which marks a drastic change in 
the temperature behaviour of their magnetic susceptibility. Above TN, the inverse 
susceptibilities (figure 3) are linear in temperature, in agreement with the Curie law for 
paramagnets. Below TN, decreasing temperature results in susceptibility variations that 
are highly dependent on the crystal and on the direction. In Fe2Si04 and Co2Si04, a 
decrease in susceptibility below TN is seen along the b-axis, indicating antiferromagnetic 
ordering along this axis, in agreement with the neutron results. In Mn,SiO,, no decrease 
in susceptibility is observed at low temperature, but the weakness of the magnetisation 
( 0 . 0 4 , ~ ~  per ion) indicates that this is also an antiferromagnet. The weak remnant 
magnetisation (0.006 pB per ion) in the c-direction indicates weak ferromagnetism. 

3. Theory 

Our starting point will be a description of the energy of the magnetic system under an 
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Table 1. Magnetic modes that are invariant under one of the magnetic groups compatible 
with magnetic ordering of both 4a and 4c sites in Pnma. 

external field H ,  by: 

The summations are over the eight magnetic sites of a cell, and the three directions 
parallel to the crystallographic axes. Si" is the component along a of the spin at site i. piff 
is the magnetic moment along a at site i .  This is 2 . p g i " ~ S j P p B .  The tensor gi is the Land6 
factor of the ion at site i .  pB is the Bohr magneton. We assume, therefore, that the system 
is made up of ions that can be described by spin Hamiltonians. The four contributions 
to the Hamiltonian (3.1) are successively exchange interactions, single-ion anisotropies, 
magnetic interactions between the magnetic moments and magnetic couplings with the 
applied field. 

3.1. The mean-jield approximation 

At non-zero temperature, the stable configuration under an applied field or not, requires 
finding the minimum of the free energy E - T X S. A classical approximation is a 
decoupling of the problem by considering each site as submitted to the influence of the 
other sites, but with no feedback interaction from this site to them. That is, no cor- 
relations of the spin fluctuations are taken into account. Then there exists a set of 
equations 

whose unknown is the set {(SF),}. The functionsJn represent Boltzmann averages of Sf" 
over the energy levels of the spins i whose Hamiltonian is 

(3.3) 

(Sf 9 2 -  = fi " ( T ,  {(SI ) 7 ) )  (3.2) 

- ~ ~ , l f f P ( S I P ) ~ S f a  - ( $ ) x A l n i ' S i n S l P  - p ~ g  x f ! n g f a ; o S , P  
I "P "P f fB 

where Nil@ = Jfl~l l i3aB + EyagrYaT~lYGg~P 

3.2. Magnetic symmetry groups 

We use the conclusions of Ballet and Fuess (1989) concerning the constraints borne by 
the olivine crystallographic structure on the magnetic sites 4a and 4c. The spin modes or 
magnetic moment modes A In, Cla,  Gla ,  F1" are defined on the four 4a sites as the four 
possible configurations affording equal lengths of the spins or of the magnetic moments 
along the a-direction (Bertaut 1963). The last one is ferromagnetic, while the others 
are antiferromagnetic. AI, C1 and G1 correspond to spin directions + - - +, + - + - 
and + + - - on the ions 1 , 2 ,  3 and 4, respectively. Ion 2 (or 4) is deduced from ion 1 
(or 3) by the twofold screw rotation 21b. Similarly, G, and F, are defined on the 4c sites. 
Table 1 shows the four sets of modes that can coexist in the ordered phase when no field 
is applied. Each set corresponds to a different group of magnetic symmetry operations 
compatible with the group of the crystallographic symmetry operations. The magnetic 
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structures of Fe2Si04 and Co2Si04 belong to the r+++ group, and that of Mn2Si04 to 
r- - +, Under a magnetic field applied along the a-axis, the modes of the group to which 
the modes F" belong are induced. The crystallographic symmetry yields relations among 
the parameters that appear in the Hamiltonians; among the exchange parameters, for 
instance, these are = J1,. By neglecting the indirect exchanges occurring via two 
oxygens with respect to those occurring via one oxygen and the direct exchanges, one is 
left with four parameters: J12  (4a-4a interactions), Jlj and J3,  (4a-4c) and Jj7 (4c-4c). 
Among the anisotropy and Lande tensors, these relations are, for instance,AZab = -Alab 
and g2ab = -glob, so that only A l ,  A,, g,  and g, are required. To make full use of these 
relationships, it is interesting to write the Hamiltonian (3.3) on the basis of the spin 
modes. A table representing the tensor J' defined by J ' ,  = Jt,Z,, on this basis is given in 
Ballet and Fuess (1989). The elements of the tensors A, connect only those modes that 
correspond to the same class of sites (4a for i = 1, 4c for i = 5)  and belong, as they 
should, to the same magnetic group. Then, the corresponding element is merely At*@, 
whatever the two modes, where a and /? are the directions of these modes. The mirror 
planes perpendicular to the b-axis and containing the 4c sites, constrain a principal axis 
to be along b, i.e., Asub = 0 = Asbc, and the same for g5. We call U,,"P(r) the elements 
of the magnetic dipolar interaction tensor T on the basis of the magnetic moment modes; 
m and n are 1 or  5 according to the class of sites to which the modes belong. For a given 
set mn, Umna@(r) depends on the magnetic group r under consideration. Here again, it 
is verified that no elements connect the modes that do not belong to the same group. 
Within a given magnetic group, the non-zero elements are the following: Ulla* = Tllan 
+ T12** + TI3** + T14@* and Ussun = T55n* + Ts6*" + T57na + T58no, where the signs are 
the same as in the definition of the mode of the group that exists in the a-direction. 

= TS6@ if LY # p. U15"' = 2(T1s"@ + T17"P) with + (or -) if the 4c mode is Fs@ (or 
G5'), whatever the 4a mode. The tensor N itself is split into subtensors {N,,*@(r)}, one 
for each magnetic group. 

4. Discussion 

4.1. Paramagnetic susceptibility 

When the temperature kBT is much higher than the higher energy level of the Ham- 
iltonians (3 .3) ,  the functionsf,n appearing in (3 .2)  can be made linear in the arguments 
of the Boltzmann factors (note that pBH/kB is 1 K when H = 15 kOe). Assuming that 
this condition is fulfilled, at least above 100 K,  we have calculated the spin component 
along the p crystallographic axis, which is induced on the site i by a field applied along 
the a crystallographic axis: 

l i n H o ) l [  3kB T - s(s + 1) 

\ Y  / J  

where 

BiPY = (i){l + [(2 - 56p')/4S(S + l)]}Ai@r. 

The factor in front of A/3Y is 0.525 and 0.650 for the diagonal and off-diagonal elements 
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for Fe2+, respectively, compared with 0.480 and 0.680 for CO''. Assuming self-con- 
sistency of the above equations, we find: 

( S i p )  = CiBaHa/ (T -  e,@") + order (T3)  (4.2) 

where 

Using the symmetry properties of the various parameters, we have transformed the 
above formulae to find the mean values of the spin modes S,p which can be induced by 
H". These are the modes that belong to the group of the modes F,,,". The result is a 
simple change of i, j in (4.2) into m, n and the subtensor {N,"P} becomes {N,,,,"p(r)}. 
Through the tensor g, every S mode yields a contribution to every p mode of the group. 
The magnetisation per ion induced by the field is given by the p modes F," and F,". 
From the general relation 

C , / ( T  - e , )  + C,/(T - e,) = C/(T  - 0 )  + order (T3)  

c= c, + c2 

(4.3) 

with 

ce = c,e, + c2e2 

(4.4) 

where 

Finally, when the field is applied along a direction d whose direction cosines are {Rda} in 
a,  b, c ,  X d  = R,, xu. Apart from xa, xb,  xc no new information is available. This comes 
from the absence of the possibility that the component of H along one of the three axes 
gives rise to an F mode along another axis that is itself due to the orthorhombic symmetry 
of the crystal. From our measurements we obtain 6" and r" for (Y = a,  b and c:  

2 

8" = temperature to which (pW)-' ( T )  extrapolates to zero (4.5) 

r" = [4.5/S(S + l)]/[slope of ( p " ) - ' ( T )  in the units of figure 31. 

These experimental values, deduced from the straight lines drawn in figure 3, are 
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Table 2. Quantitative information drawn from the susceptibility curves. From the observed 
paramagnetic susceptibility parameters r" and 0". the combinations E l ,  E2 and E3 of the 
spin Hamiltonian parameters are deduced according to relations (4.6) and (4.8). Note 
that from the observed transition temperatures Th, combinations E4 are deduced (see 
expressions (4.18). (4.19) and (4.22)). 

A a r* o n  TN S E l  E2 E3 

Mn 4.00 -170 47.0 2.5 0 -58.3 -0 

Fe a 4.83 -103 0.21 -10.5 
b 5.13 -118 65.0 2 0.28 -46.0 -24.8 
c 4.35 -55 0.09 35.3 

CO a 6.03 -107 0.51 -80.6 
b 6.59 -19 50.0 1.5 0.65 -46.9 66.1 
c 6.31 -50 0.58 14.5 

displayed in table 2. In (4.4), r" is a quadratic expression of the tensor elements g,"p. 
Defining by ZPlmaPS,PpB the orbital contribution which, besides the spin contribution 
2S,"pB, contributes to the magnetic moment p,", then g,@ = 26"p + I,"@, and 

or again 

(lye - 4)/4 = ($)E ( I ,  "* + 2 ( I ,  = El .  
m B 

This last expression is physically more explicit than the expression of r" in (4.4) since it 
is the average over the two crystallographic sites of an expression that reduces to I,"" in 
the limit I, < 2 (note that 15" = Isb' = 0). The experimental values of E l  are shown in 
table 2. In (4.4) the various parameters of the model, q,, A,,J,/, T,], are combined to give 
0". Looking for more explicit relations, that is, relations where the model parameters are 
less convoluted, it appears that this requires nothing less than regarding the g, tensors 
as isotropic and equal at both sites. As a result of this approximation, one gets 
3 k ~ 8 " / S ( S  + 1) ( B ,  "" + B5 "")/2 

+ J I 2  + 2Jj7 + 2 J L 5  + 4J3j + 4[U15 "" + (Ul1 + Uj5 "")/2]. (4.7) 
The last term stands for the dipolar energy (assuming g = 2). It amounts to about 40,75 
and -115 mK when a is a,  band c,  respectively, whatever the crystal. Thus, this term is 
negligible with respect to the left-hand term. The left-hand term can be considered as 
one of the three elements of a diagonal tensor, which is the average over all sites i of a 
tensor {B,"p + Z:,J',G"p}. Since B, is traceless, this gives: 

[l/S(S + l)] 2 8" (l/kB)(J12 + 2J5, + 2J15 + 4J35) = E2 (4.8) 
a 

and 

[l/S(S + 1)](38, - 2 O D )  = ( l /kB)  ( B ,  "" + Bj "")/2 
P 

i.e., 
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The experimental values of E2 and E3 are shown in table 2. The parameters 8 and r of 
the powder paramagnetic susceptibility are equal to (4)&Oa and (Q)Z,Y, respectively, 
i.e., -170,4.00forA = Mn; -92,4.77forFe,and-58.7,6.31forCo.Theywere -163, 
3.93; -126, 6.06 and -65, 6.91, respectively, according to Nomura et a1 (1964) and 
Santoro et a1 (1966). 

We have looked for analytical relations allowing the experimental parameters that 
define the paramagnetic susceptibilities to be linked to a restricted number of theoretical 
parameters. This led us to linearise the thermal average of the moments over the spin 
levels corresponding to the Hamiltonians (3.3). However, the validity of the cor- 
responding relations (4.4) is bound to that of the assumptions that are necessary for this 
simplification. The theoretical parameters describing the spin levels of the lowest orbital 
level are here the tensors A and g. In the case of Fe2Si04 and Co2Si04, their link with 
the orbital levels of the orbital triplet 5T2g and 4T,g, respectively, which constitutes the 
ground state of the ion in a cubic crystal field has been given by Ballet and Fuess (1989). 
Calling A the splitting between the two lowest orbital levels of this triplet, due to the 
non-cubic crystal field, and AZZ, AXX the largest and weakest principal values of A, 

(4.9) Azz -AXX = 2 2 2 P A /A 
and similarly, replacing Azz by AYY, and A by A', the splitting between the lowest and 
the highest orbital levels of the triplet. p = - 1 for Fe2+ and -4for CO2+. This corresponds 
to the second-order effect of the spin-orbit coupling between the lowest orbital level 
and the two others. Within this approximation, g'" = 2, g y y  = 2(1 - pA/A') and gzz = 
2(1 - p2A/A). However, (i) asp2A/A increases, thefourth-ordereffectyieldsanincreas- 
ing anisotropy term of fourth order in the spins. (ii) The use of the spin Hamiltonian is 
itself limited by the condition A B kBT, which ensures that the levels not represented by 
the spin Hamiltonian are not populated. (iii) The linearisation of the thermal averages 
is justified as long as kBT is much greater than the greatest splitting in the spin levels 
issuing from the orbital ground state, i.e., 

(4.10) 

(iv) Expression (4.4) neglects the so-called Van Vleck susceptibility. This contribution 
to the susceptibility is temperature-independent and comes from an orbital moment 
transfer from the two higher orbital levels to the low-lying one. This transfer does not 
depend on the spin states, and is induced by the coupling of the orbital levels by the 
magnetic field, via the term - p B H * L .  For an ion, a field of 10 kOe applied along one of 
its principal axes A ,  induces a Van Vleck contribution of ($)(A"" - AXX)/A2 Bohr 
magneton. It is therefore maximum along the easy axis of magnetisation of the site, and 
increases with decreasing orbital splittings. 

It has been shown by Ballet (1979) that the above constraints are more compelling 
than is often thought. In the simple case of an orbital doublet situated at 1500 K above 
the ground state, and with a spin-orbit constant A = -150 K,  x - ' ( T )  was calculated by 
computer within the orbital triplet. The conclusions are as follows. If the resulting 
curves were observed experimentally, they could be fitted satisfactorily by straight lines. 
Because the inverse susceptibilities would not be very accurate above 250 K due to the 
weakness of the susceptibilities, this fit would be done in the range 100-250 K. However, 
these lines deviate significantly from those obtained analytically by linearisation of the 
thermal averages over the eigenstates of the second-order spin Hamiltonian. This is due 

kB T BAZZ - A X X .  
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to the (iii) and (iv) effects described above. Effect (iii) shows itself as soon as a computer 
calculation of the thermal averages is performed within the orbital singlet. Below 200 K,  
the term of order T-* is perceptible in x( T )  as well as that of order T-' (i.e., the term of 
order T o  beside that of order Tin  x-'(T)) and the fitted lines extrapolate to lower 8" 
than calculated analytically, especially along the axis of hard magnetisation. Effect (iv) 
appears when the two other orbital states are introduced into the computation. This 
actually transformsx-'( T )  into%-'( T) - xvv x x-*( T), which corresponds to adecrease 
in the slope of the fitted lines, increasing the apparent value of g, especially along the 
axis of easy magnetisation. 

In Mn2Si04, there is no question of any low-lying excited orbital states and kBT is 
always far greater than the elements of A,. Therefore, relation (4.4) is expected to be 
satisfactory. The observed susceptibility shows no significant anisotropy and a Curie law 
with g = 2 fits well the thermal behaviour of the susceptibility above 100 K. The non- 
linearity of x - ' ( T )  below this temperature is probably due to short-range order. The 
assumption leading to relation (4.8) from (4.4) is fully justified, and the E2value reported 
in table 2 is expected to be good. 

In Fe2Si04, however, strong deviations from the above approximations are apparent. 
The succession of the axes that orders the r" by increasing values, orders the 8" by 
decreasing values. On the contrary, in a second-order spin Hamiltonian, the principal 
values of g and A are maximum along the same principal axes. Calculating by (4.9) the 
energy levels A and A' of an imaginary unique site whose principal axes would be a,  b 
and c along which the values would be those of our compound, gives 450 K and 2250 K 
if A = -130 K. This shows that the lower excited orbital level of at least one of the two 
sites is probably not very high compared with pA and kBT (hence (4.9) is not well 
justified). The model proposed in Ballet and Fuess (1989) to explain the magnetic 
structure observed in Fe2Si04 and its thermal evolution was that at the 4a sites the 
highest principal value of A, would be along a direction lying not far from the c axis, 
while at the 4c sites, it would be along b .  On account of the strength of the 4c anisotropy, 
which is needed to understand that the G modes are stabilised along the b-direction 
despite the strong 4a anisotropy, the low Ob value is puzzling. As for the high gbb value, 
this could be due to a strong Van Vleck term in the 4c susceptibility. The fact that the 
susceptibility along a is not lower than that along b may be due to an M2 anisotropy 
favouring the a-direction as well as the b-direction. This is still compatible with a 
stabilisation of the r+ + + magnetic group in spite of the M1 anisotropy which favours the 
Glc modes, i.e., the r+ - + group. 

Other orders of magnitude are also interesting to deduce from the above picture of 
a unique site, which is the only means of making analytical estimates. A computation 
taking into account only the order 2 in A/A would give the spin levels at 0, 1,68,88 and 
104 K. The intensity of the fourth-order terms in S would be about (pA/A)* = 10% of 
the intensity of those of second order. As for the magnetic entropy at T,, it would be 
kBln(4.1) = 0.87kBln(5) per ion. This could indicate that the discrepancy between the 
value 0.81kBln(5) found by Robie et a1 (1982a) and k,ln(5) is not necessarily due only to 
short-range order. The fourth-order terms are not expected to greatly modify the above 
spin level values, since our perturbation calculations to fourth order in the case of an 
axial anisotropy shows that the neglect of these terms leads to overestimating the 
minimum orbital splitting A ,  and to an insignificant change in the ratio between the 
maximum splitting of these spin levels and of the 8" from which it has been deduced. 

In Co2Si04 the relative values of r", i.e., of g,"" + g5"", are of the same order as the 
values of e", i.e., of Alma + A5". The maximum values correspond to cy = b ,  which is 
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the direction along which the moments develop their principal mode G.  Here the picture 
of a unique site gives the energies at 1700 K and 2500 K if A = -230 K, for the orbital 
levels, and at 0 and 130 K for the spin Kramers doublets. xvv is therefore weak, but the 
measurement temperatures are perhaps too low, especially along the a-direction, to be 
sure that the term in 1/T2 is negligible in x( T). The fourth-order contribution would be 
4%. The magnetic entropy at TN would be kBln(2.56) = 0.68kBln(4) per ion. This is not 
far from the value of 0.71kBln(4) per ion found by Robie et a1 (1982b). The excited 
doublet would be populated at 7% only at TN, leading to an effective spin nearer to 4 
than to $ (2s' + 1 nearer to 2 than to 4) below T N .  

4.2. The ordering transition 

The temperature for magnetic ordering is the highest temperature at which every spin 
can order under the action of the other spins. At the transition, the spins can be 
considered as small as necessary for the mean-field equations (3.2) to be linearised. We 
have found 

I 

The transition requires self-consistency so that, replacing on the right of (4.11) (S,") by 
the expression (4.11), it becomes 

(s, ") = S(S + I)( 2 ( S I  P)Nl, "") / [3k~ T - S(S + 1) 
IP 

x (2 ( S k  Y ) B ~  ~ W / ( S ~  e))] + order ( ~ - 3 ) .  (4.12) 
ky 

Multiplying by the denominators, this becomes 

(S, ") = [S(S + 1)/3kB TI 2 (N,! Pa + B, P"dIs,,)(S, P ) .  (4.13) 
IP 

This requires that 

{ N ,  "B + 6,B, " P }  = [3kB T/S(S + l)]{unit tensor}. (4.14) 

The highest eigenvalue A of the tensor on the left-hand side of (4.14) corresponds to the 
configuration with the highest transition temperature: 

(4.15) 

The diagonalisation will be performed separately in the four subtensors 
{N,,"P(r) + d,,B,"p} expressed on the basis of the modes. Unfortunately, these sub- 
tensors are too large to allow an analytical expression of the eigenvalues to be found. 
However, with the assumption that the transition is governed by the projection of the 
tensor over the restricted basis (GIn,  G5") (a = b for Fe and CO, and a = a for Mn) this 
gives 

TN = [S(S + 1)/3kB]A. 



(4.16) 

Neglecting the energy of the di?olar interactions, we obtain 

3kB TN/S(S + 1) = J I 2  - 2J57 + ( B ,  + B5 "")/2 

+ {[Il l  + 2.357 + ( B ,  "" - Bs "")/212 + [2J15 - 4J35l2}'/'. (4.17) 

For Mn2Si04, we neglect the magnetocrystalline energy in front of the exchange energy, 
and we obtain 

16.5 kB = J I 2  - 2Js7 + [(.Il2 + 2J57)2 + 4(J1, - 2J3j)2]1/2 = E4 (Mn). 

For Fe2Si04, using the E3 value (A1BB + As") of table 2, we obtain 

32.3 kB = J12 - 2JS7 + { [ J I z  + 2Jj7 + 0.26 (A, bb - A5 b b ) ] 2  

+ 4(J l j  - 2J35)2}3/2 = E4 (Fe). 

(4.18) 

(4.19) 

However, as seen in the preceding section, at the transition all the spin levels are probably 
not populated, at least on one site. Moreover, the necessary reduction of the tensor to 
the above-mentioned projection may be not a good approximation because of the high 
AIhC value that i s  responsible for the canting of the 4a moments, which appears below 
the transition. 

For Co2Si04, it was shown in 8 4.1 that the assumptions on which the calculation 
leading to (4.17) is based, do not hold. Actually, at TN the higher spin doublet is barely 
populated, and the behaviour of the CO*+ ions is led by the lower spin doublet (S' = 1) .  
Taking only this doublet into account, a calculation of the mean field TN value can be 
performed in the following way. 

The eigenstates of the spin Hamiltonian in a site i can be described by 

y1$)+6) -1 )  a n d y / - $ ) + 6 1 1 ) ,  a t - ($)A,bbxi  

614) - y1-i) andS1-$) - ylB), at +($)A,bhx, 
(4.20) 

where xi? = 1 + 17'/3, 17 = (A? - A?)/Aibb, y' = (x i  + 1)/2xi and 6' = (xi - 1)/2xi. 
(The quantum problem is formally equivalent to the hyperfine interaction of an electric 
field gradient acting on the I = $ state of a Mossbauer nucleus 57Fe.) With Aibb > 0, the 
fundamental doublet is the first one. Within this doublet, the term -ZnaNmnba(Sfl")S,,b 
is diagonal and generates a splitting equal to (3y2 - 62)Z,,Nm,bn(S,"). At the transition, 
the splitting is vanishingly small. Therefore it is very small with respect to kBT. Along b ,  
the spin quantum mean i s  Em (or - E m )  on the ground (or excited) level. Its thermal 
average is 

(Sm b ,  = (1/kB T)gm2 N m n  with g,,, = (x, + 2)/(2xm). (4.21) 

The transition arises when consistency is reached, i.e., when kBT is small enough to be 

nly 
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an eigenvalue of the tensor {ljm2Nm,"~}. Considering only the projection over {Gib, GSb}, 
which is justified since the canting is weak, one gets: 

k B T N  = 49.3 k B  = gl2JI2  - 2g52J57 + [(EI2Jl2 + 25j2J57)2 

+ 45,5j(J15 - 2J3j)2]1'2 = E4 (CO). (4.22) 

Note that in the particular case El  = g5 = 5,  this gives kBTN = E 2  X {right-hand term 
of formula (4.18)}. For Amcc = Amaa = (-h)Ambb, &" = 2.25,  while for A," = Ambb = 
(-&)Amaa, E 2  = 1.0. This shows clearly the great effect of single-ion anisotropy on TN. 

In contrast with the 8" values, which are determined by the susceptibility at tem- 
peratures where the mean-field approximation is satisfactory, the TN value is sensitive 
to short-range correlations. Their effect is to decrease the TN value from the mean- 
field value by retaining the paramagnetic state, so that the E4 values above may be 
underestimated. This effect is more important for weaker anisotropy (de Jongh and 
Miedema 1974), hence it is expected to be the most important in Mn2Si04 (Heisenberg 
three-dimensional magnet) and the least in Co2Si04 (Ising-type three-dimensional 
magnet). 

4.3. Below TN 

Now we discuss qualitatively the evolution of the magnetisation induced under 10 kOe, 
in the three crystals, along the axes a ,  b and c. Since any macroscopic magnetisation 
along a direction a is due to the Fmn modes, this reduces to studying these modes when 
a field H = H" is applied and when the temperature varies. However, the intensity of 
these modes never exceeds 0.08 pB per ion when H = 10 kOe, while the intensity of the 
G modes is in the range 3-5 pB per ion. Moreover, the interactions responsible for the 
zero-field magnetic structure are far greater than the interaction of the spins with H .  
Therefore, the main modes will always be those that constitute the zero-field structure. 
It is worthwhile remembering the following classical result on the collinear anti- 
ferromagnets with only one class of magnetic sites. If an anisotropy precludes a rotation 
of the moments, a field applied along them gives rise to a susceptibility decreasing to 
zero when T decreases from TN to 0 K (XI,). When the field is perpendicular to the 
moments, the susceptibility stays nearly constant (xi). 

In Mn2Si04, the difference M ,  - Mb below 47.7 K is exactly the remnant mag- 
netisation appearing in the M,(H) curves. It is also found as M,(T)  measured in a weak 
field just large enough to preclude the building of the weak ferromagnetic domains 
(figure 2, insert). Therefore, the initial susceptibilities xc and x b  are equal. xa is only a 
little smaller. Along the three directions the susceptibility has a xI character. Along b 
and c this is normal since the zero-field configuration is along a.  The decrease in xa just 
below TN, where the moments of the 4a sites are small with respect to those on the 4c 
sites (see Ballet and Fuess 1989), may correspond to a x  ll character of the susceptibility 
of the 4c moments, which are aligned along a .  Because xa does not decrease further 
when the temperature continues to fall, a field-induced rotation of the configuration 
seems to be necessary to explain it. However, a magnetocrystalline anisotropy is required 
to explain why the axis a is chosen for the G modes, since the dipolar energy does not 
favour this direction (Ballet and Fuess 1989). The energy saved by a rotation would be 
less than 25 mK (taking into account the M1 canting), so it is unlikely that the rotation 
would happen. Consequently, we think that at low temperatures, xa is due mainly to the 
components on the 4a sites perpendicular to the a-axis. The weak ferromagnetism results 
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from a small canting of the moments towards the c direction. Within the r- - + symmetry 
group, such canting actually gives rise to the F,' modes. The canting may result from an 
anisotropic exchange coupling, or from the dipolar interactions, as well as from a weak 
single-ion anisotropy. The decrease of the weak ferromagnetism below 14 K may be 
correlated with the onset of the A,' mode which spoils the GI" mode a part of its length. 
This assumption requires that a part of the weak ferromagnetism is due to an FIC mode 
created by the action of a non-zero anisotropy term AICa on the GI" mode. 

In Fe2Si04, the susceptibility along b decreases below T N ,  while along a it increases 
very slowly. This is understandable in view of the antiferromagnetic structure which is 
mainly along b. However, a remarkable feature of the susceptibility curves is the absence 
of any accident on xc at TN.  The susceptibility continues to increase when T decreases 
below TN. The Curie law is still followed until, at 20 K, xc begins to fall. We think that 
this pseudo-paramagnetic behaviour is due to the 4a sites. The antiferromagnetic order 
sets up mainly in the 4c planes. The 4a spins bridge these planes. The 4a spins are 
submitted to two contradictory forces. One of them is internal to the ion, and it attracts 
the spins toward a direction which is near the c-axis. The other arises from the exchanges 
with the 4c spins (J1r2J35) necessary for the magnetic order that appears at TN.  It attracts 
the spin along the 4c magnetic structure, i.e., along b. The 4a-4a exchange coupling 
( J 1 2 )  should be weak. This, added to the above conflict, gives to the 4a spins a great 
susceptibility to the action of an external field, and especially along c.  The very slow 
saturation of the 4a moments when T decreases, and the single-ion anisotropy of the 4a 
sites which was required to explain the thermal behaviour of the canting (Ballet and 
Fuess 1989) are quite consistent with this view. The fall of xc below 20 K results from the 
increase of the canting: when the moments come closer to the c-direction and are better 
ordered, xc adopts some character. 

In Co2Si04, the general trend of the susceptibility is more common than in Fe2Si04. 
x b  has a strong xi1 character, while xc and xa are %,-like. This is in agreement with the 
main direction of the moments which is b. The c-direction is favoured, compared with 
the a-direction. But it is not possible to know how this anisotropy is distributed between 
the two classes of sites. The non-zero value of x b  at T = 0 K is probably due to the canting 
of the 4amoments, which introduces somex, characterinxb. Similarly, somexllcharacter 
of the susceptibilities along c and a,  which do not decrease down to 0 K, are probably 
responsible for their slight decrease below TN.  

5.  Conclusion 

The realisation of single crystals has allowed the measurement of the anisotropy of the 
magnetic susceptibilities of Mn2Si04, Fe2Si04 and Co2Si04. The strong anisotropy 
detected in Fe2Si04 and Co2Si04 confirms the assumption made by Ballet and Fuess 
(1989) that the thermal behaviour of their magnetic structure is strongly determined by 
their magnetocrystalline anisotropies. The weak ferromagnetism measured along the c- 
axisof Mn2Si04could be predictedfrom the observed magneticstructure by the magnetic 
symmetry group approach, and hence confirms the validity of this approach. The special 
thermal behaviour of the susceptibility observed along the c-axis in Fe2Si04 seems to be 
in good agreement with the view proposed by Ballet and Fuess (1989) to explain the 
thermal evolution of the canting of the M1 moments in this compound. That is to say, 
the M1 ions thermodynamics is dominated by the competition between their strong 
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single-ion anisotropy favouring a direction near the c-axis, and their exchange inter- 
actions with the M2 moments attracting them along the b-direction. 

The susceptibility observed in Co2Si04 is in good agreement with the observed 
magnetic structure. The establishment of analytical relations between the experimental 
parameters drawn from the magnetisation curves, C", O", TN, and temperature-inde- 
pendent theoretical parameters describing the electronic state of the ions and their 
interactions, was pushed as far as possible. On the one hand, these analytical relations 
require that, in particular, the ion can be modelled by a second-order spin Hamiltonian. 
On the other hand, the existence of two types of fourfold sites, leads to an important 
underdetermination of the theoretical parameters. The microscopic susceptibility ten- 
sors are not observed, and one is led to consider an intermediary picture: that of a 
macroscopic or mean site defined as one that would have a susceptibility tensor equal to 
the observed macroscopic one. 

Using the relationship between the spin Hamiltonian parameters and orbital levels, 
it has been shown that the parameters deduced from the experiments through the 
analytical relations correspond to orbital levels that do not always fulfil the conditions 
required to justify the representation of the sites by a second-order spin Hamiltonian, 
and hence to justify the analytical relations themselves. However, for Fe,SiO, and 
Co,SiO, the magnetic entropy calculated at TN by considering the level scheme of the 
above-defined mean site does not disagree with that determined by Robie et a1 from 
specific heat measurements. 

The ensemble of the experiments performed on Mn,SiO,, Fe2Si04 and Co2Si04 by 
neutron diffraction and magnetic measurements, has allowed us to establish a model 
that is consistent with the main features of the observed magnetic behaviour in all three 
compounds. Computer simulations (Ballet and Fuess, to be published) of the magnetic 
structures, susceptibilities and specific heats, which require fewer approximations than 
the analytical approach, and are not confined to a choice of a small number of exper- 
imental parameters, confirm the main trends of this model. 
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